From 1 - 7 / 7
  • Newer version v1.1 available at eCat <a href="https://pid.geoscience.gov.au/dataset/ga/147720">147720</a> Isotopic data from rocks and minerals have the potential to yield unique insights into the composition and evolution of the Earth's crust and mantle. Time-integrated records of crust and mantle differentiation (as preserved by the U-Pb, Sm-Nd and Lu-Hf isotopic systems, for example) are important in a wide range of geological applications, especially when successfully integrated with other geological, geophysical, and geochemical datasets. However, such integration requires (i) compilation of comprehensive isotopic data coverages, (ii) unification of datasets in a consistent structure to facilitate inter-comparison, and (iii) easy public accessibility of the compiled and unified datasets in spatial and tabular formats useful and useable by a broad range of industry, government and academic users. This constitutes a considerable challenge, because although a wealth of isotopic information has been collected from the Australian continent over the last 40 years, the published record is fragmentary, and derived from numerous and disparate sources. Unlocking and harnessing the collective value of isotopic datasets will enable more comprehensive and powerful interpretations, and significantly broaden their applicability to Earth evolution studies and mineral exploration. As part of the Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf), we have designed a new database structure and web service system to store and deliver full Lu-Hf isotope and associated O-isotope datasets, spanning new data collected during research programs conducted by Geoscience Australia (GA), as well as compiled literature data. Our approach emphasises the links between isotopic measurements and their spatial, geological, and data provenance information in order to support the widest possible range of uses. In particular, we build and store comprehensive links to the original sources of isotopic data so that (i) users can easily track down additional context and interpretation of datasets, and (ii) generators of isotopic data are appropriately acknowledged for their contributions. This system delivers complete datasets including (i) full analytical and derived data as published by the original author, (ii) additional, normalised derived data recalculated specifically to maximise inter-comparability of data from disparate sources, (iii) metadata related to the analytical setup, (iv) a broad range of sample information including sampling location, rock type, geological province and stratigraphic unit information, and (v) descriptions of (and links to) source publications. The data is delivered through the Geoscience Australia web portal (www.portal.ga.gov.au), and can also be accessed through any web portal capable of consuming Open Geospatial Consortium (OGC)-compliant web services, or any GIS system capable of consuming Web Map Services (WMS) or Web Feature Services (WFS). This Record describes the database system and web service tables. It also contains full tabulated datasets for data compiled from the North Australian Craton as part of the EFTF program. These data are predominantly micro-analytical zircon analyses which are linked at the spot-level across Lu-Hf, O, and U-Pb measurements. This data release comprises 5974 individual analyses from 149 unique rock samples.

  • <div>Historically, isotopic data are collected at the individual sample level on local- to regional-scale features and are dispersed among decades of both published and unpublished individual academic literature, university theses and geological survey reports, in disparate formats and with widely varying levels of detail. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Geoscience Australia’s (GA) continental-scale Isotopic Atlas of Australia (Fraser et al., 2020), breaks this cycle of single-use science by compiling and integrating <strong>multiple radiometric age and isotopic tracer datasets</strong> and making them publicly accessible and useable through GA’s Exploring for the Future (EFTF) Portal.</div><div><br></div><div>The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal.&nbsp;</div>

  • This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.

  • The ISOTOPE database stores compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. This internal database is only publicly accessible through the webservices given as links on this page. This data compilation includes sample and bibliographic links. The data structure currently supports summary ages (e.g., U-Pb and Ar/Ar) through the INTERPRETED_AGES tables, as well as extended system-specific tables for Sm-Nd, Pb-Pb, Lu-Hf and O- isotopes. The data structure is designed to be extensible to adapt to evolving requirements for the storage of isotopic data. ISOTOPE and the data holdings were initially developed as part of the Exploring for the Future (EFTF) program. During development of ISOTOPE, some key considerations in compiling and storing diverse, multi-purpose isotopic datasets were developed: 1) Improved sample characterisation and bibliographic links. Often, the usefulness of an isotopic dataset is limited by the metadata available for the parent sample. Better harvesting of fundamental sample data (and better integration with related national datasets such as Australian Geological Provinces and the Australian Stratigraphic Units Database) simplifies the process of filtering an isotopic data compilation using spatial, geological and bibliographic criteria, as well as facilitating ‘audits’ targeting missing isotopic data. 2) Generalised, extensible structures for isotopic data. The need for system-specific tables for isotopic analyses does not preclude the development of generalised data-structures that reflect universal relationships. GA has modelled relational tables linking system-specific Sessions, Analyses, and interpreted data-Groups, which has proven adequate for all of the Isotopic Atlas layers developed thus far. 3) Dual delivery of ‘derived’ isotopic data. In some systems, it is critical to capture the published data (i.e. isotopic measurements and derived values, as presented by the original author) and generate an additional set of derived values from the same measurements, calculated using a single set of reference parameters (e.g. decay constant, depleted-mantle values, etc.) that permit ‘normalised’ portrayal of the data compilation-wide. 4) Flexibility in data delivery mode. In radiogenic isotope geochronology (e.g. U-Pb, Ar-Ar), careful compilation and attribution of ‘interpreted ages’ can meet the needs of much of the user-base, even without an explicit link to the constituent analyses. In contrast, isotope geochemistry (especially microbeam-based methods such as Lu-Hf via laser ablation) is usually focused on the individual measurements, without which interpreted ‘sample-averages’ have limited value. Data delivery should reflect key differences of this kind.

  • <div>A minor update to Version 1.0: Lu Hf and O isotope data structure and delivery.</div><div><br></div><div>Isotopic data from rocks and minerals have the potential to yield unique insights into the composition and evolution of the Earth's crust and mantle. Time-integrated records of crust and mantle differentiation (as preserved by the U-Pb, Sm-Nd and Lu-Hf isotopic systems, for example) are important in a wide range of geological applications, especially when successfully integrated with other geological, geophysical, and geochemical datasets. However, such integration requires (i) compilation of comprehensive isotopic data coverages, (ii) unification of datasets in a consistent structure to facilitate inter-comparison, and (iii) easy public accessibility of the compiled and unified datasets in spatial and tabular formats useful and useable by a broad range of industry, government and academic users. This constitutes a considerable challenge, because although a wealth of isotopic information has been collected from the Australian continent over the last 40 years, the published record is fragmentary, and derived from numerous and disparate sources. Unlocking and harnessing the collective value of isotopic datasets will enable more comprehensive and powerful interpretations, and significantly broaden their applicability to Earth evolution studies and mineral exploration.</div><div><br></div><div>As part of the Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf), we have designed a new database structure and web service system to store and deliver full Lu-Hf isotope and associated O-isotope datasets, spanning new data collected during research programs conducted by Geoscience Australia (GA), as well as compiled literature data. Our approach emphasises the links between isotopic measurements and their spatial, geological, and data provenance information in order to support the widest possible range of uses. In particular, we build and store comprehensive links to the original sources of isotopic data so that (i) users can easily track down additional context and interpretation of datasets, and (ii) generators of isotopic data are appropriately acknowledged for their contributions.</div><div><br></div><div>This system delivers complete datasets including (i) full analytical and derived data as published by the original author, (ii) additional, normalised derived data recalculated specifically to maximise inter-comparability of data from disparate sources, (iii) metadata related to the analytical setup, (iv) a broad range of sample information including sampling location, rock type, geological province and stratigraphic unit information, and (v) descriptions of (and links to) source publications. The data is delivered through the Geoscience Australia web portal (www.portal.ga.gov.au), and can also be accessed through any web portal capable of consuming Open Geospatial Consortium (OGC)-compliant web services, or any GIS system capable of consuming Web Map Services (WMS) or Web Feature Services (WFS).</div><div><br></div><div>Version 1.0 of this Record (Waltenberg et al., 2021) described the database system and web service tables, and featured normalised Lu-Hf data that utilised CHondritic Uniform Reservoir (CHUR) parameters from Blichert-Toft and Albarède (1997). It also presented full tabulated datasets compiled from the North Australian Craton as part of the initial EFTF (2016–2020) program, comprising 5974 individual analyses from 149 unique rock samples. This update (version 1.1) enacts minor changes to some field names within the web services tables to ensure consistency with other web services offered by GA, and for normalised Lu-Hf data, it applies the CHUR parameters of Bouvier et al. (2008) to the entire dataset. The digital datasets presented by Waltenberg et al. (2021) have also been supplemented by more recent analyses collected as part of GA projects in Queensland and New South Wales, in collaboration with the relevant State geological surveys. Version 1.1 does not include an updated tabular data release; the digital dataset available via the web portal now comprises 7630 individual analyses from 180 unique rock samples.</div>

  • <div>The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. In this study, we collected a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon to investigate the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000-2900 Ma, 2825-2800 Ma, and ca. 2730-2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infracrustal and/or drip-tectonic settings. While this process of crust formation and evolution is not necessarily restricted to a specific geodynamic system, we find limited direct evidence that subduction-like processes formed a major tectonic component, aside from re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these 'rift-expansion' and 'craton margin' crustal growth process led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.</div> This Abstract/Poster was submitted to & presented at the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • <div>Lithospheric and crustal architecture — the framework of major tectonic blocks, terranes and their boundaries — represents a fundamental first-order control on major geological systems, including the location of world-class mineral camps. Traditionally, lithospheric and crustal architecture are constrained using predominantly geophysical methods. However, Champion and Cassidy (2007) pioneered the use of regional Sm–Nd isotopic data from felsic igneous rocks to produce isotopic contour maps of the Yilgarn Craton, demonstrating the effectiveness of ‘isotopic mapping’, and the potential to map ‘time-constrained’ crustal architecture. Mole et al. (2013) demonstrated the association between lithospheric architecture and mineral systems, highlighting the potential of isotopic mapping as a greenfield area selection tool. Additional work, using Lu-Hf isotopes (Mole et al., 2014), demonstrated that the technique could constrain a range of temporal events via ‘time-slice mapping’, explaining how Ni-Cu-PGE mineralized komatiite systems migrated with the evolving lithospheric boundary of the Yilgarn Craton from 2.9 to 2.7 Ga. Similar studies have since been conducted in West Africa (Parra-Avila et al., 2018), Tibet (Hou et al., 2015), and Canada (Bjorkman, 2017; Mole et al., 2021; 2022). This work continues in Geoscience Australia’s $225 million Exploring for the Future program (2016-present). Isotopic mapping, which forms an integral part of a combined geology-geophysics-geochemistry approach, is currently being applied across southeast Australia, covering the eastern Gawler Craton, Delamerian Orogen, and western Lachlan Orogen, encompassing more than 3 Gyrs of Earth history with demonstrable potential for large mineral systems.</div><div> <b>Reference(s):</b></div><div> Bjorkman, K.E., 2017. 4D crust-mantle evolution of the Western Superior Craton: Implications for Archean granite-greenstone petrogenesis and geodynamics. University of Western Australia, PhD Thesis, 134 pp.</div><div> Champion, D.C. and Cassidy, K.F., 2007. An overview of the Yilgarn Craton and its crustal evolution. In: F.P. Bierlein and C.M. Knox-Robinson (Editors), Proceedings of Geoconferences (WA) Inc. Kalgoorlie '07 Conference. Geoscience Australia Record 2007/14, Kalgoorlie, Western Australia, pp. 8-13.</div><div> Hou, Z., Duan, L., Lu, Y., Zheng, Y., Zhu, D., Yang, Z., Yang, Z., Wang, B., Pei, Y., Zhao, Z. and McCuaig, T.C., 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575.</div><div> Mole, D.R., Fiorentini, M.L., Cassidy, K.F., Kirkland, C.L., Thebaud, N., McCuaig, T.C., Doublier, M.P., Duuring, P., Romano, S.S., Maas, R., Belousova, E.A., Barnes, S.J. and Miller, J., 2013. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton. Geological Society, London, Special Publications, 393: pp. 23-80.</div><div> Mole, D.R., Fiorentini, M.L., Thebaud, N., Cassidy, K.F., McCuaig, T.C., Kirkland, C.L., Romano, S.S., Doublier, M.P., Belousova, E.A., Barnes, S.J. and Miller, J., 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences, 111(28): 10083-10088.</div><div> Mole, D.R., Thurston, P.C., Marsh, J.H., Stern, R.A., Ayer, J.A., Martin, L.A.J. and Lu, Y., 2021. The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes. Precambrian Research, 356: 106104.</div><div> Mole, D.R., Frieman, B.M., Thurston, P.C., Marsh, J.H., Jørgensen, T.R.C., Stern, R.A., Martin, L.A.J., Lu, Y.J. and Gibson, H.L., 2022. Crustal architecture of the south-east Superior Craton and controls on mineral systems. Ore Geology Reviews, 148: 105017.</div><div> Parra-Avila, L.A., Belousova, E., Fiorentini, M.L., Eglinger, A., Block, S. and Miller, J., 2018. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton. Precambrian Research, 306: 174-188.</div><div> This Abstract was submitted/presented to the Target 2023 Conference 28 July (https://6ias.org/target2023/)